

Mill Test Certificate

2125-64 Avenue, Edmonton, AB Canada T6P 1Z4 Bri-Steel Manufacturing Inc.

Fax: 001 (780) 469-6986 www.brichemsteel.com Tel: 001 (780) 469-6603

Product: Seamless Carbon Steel Pipe

Product Heat Number: BSM-0680

Production Date:

Production Method: Hot Expansion

Product Heat Treatment: As-rolled

Product Size:

NPS 24 STD

January 31, 2013

Product Markings: Product Standards: ASME B36.10-2004, API 5L-44th Ed. Grade B PSL1, ASTM/ASME A/SA106-2011 Grade B/C NDE, A/SA53-2012 Grade B Type S, NACE MR0175-2009, MR0103-2010

.BRI-STEEL MFG <API> 5L-0898 API 5L GR B PSL1 ASTM/ASME A/SA106 GR B/C A/SA53 GR B NPS 24 STD HEAT BSM-0680 (PIPE # LENGTH MASS) 94.62Ib/ft NDE 740 PSI SMLS NACE MR0175 2013/01 MADE IN CANADA.

BSM-0680	Heat		
Heat	Test Type		
24	NPS		
STD	Thickness	Wall	Product Detail
2	Pieces		S
DRL	Length		
94.62	lb/ft	Mass	
\$	μR/hr	Geiger	
<20	Gauss	Res.Mag.	
Pass	insp.	Visual	
Pass	OD		Non-l
Pass	WT	T	Destructive '
Pass	ASTM E213	TU	Testing
Pass	ASTM E213 ASTM E309 7	ET	
Pass	740 psi/5s	HydroTest	
37.5° Bevel	Condition	End	

0.37	0.36	0.0003	0.001	0.001	0.005	0.02	0.01	0.08	0.03	0.22	0.015	0.016 0.015	0.88	0.20	Product	Vacuum Degas; Fully Killed	0
-	1	0.0003	t		1	0.04	0.02	0.07	0.04	0.23	0.013	0.016	0.89	0.20	Heat	Blast Furnace; EAF; Ladle Refining;	BSM-0680
(CSA)	(WII)	В	Nb	Ti	<	Z.	Mo	Cu	Cr.	Si	S	P	Μ	0	Analysis	Steelmaking Method	Heat
CE	CE															100 March 100 Ma	
									(wt%)	Chemical Analysis (wt%)	Chemica						

	BSM-0680 Heat	Heat		
	Heat	Test Type		
	Ferrite & Pearlite	Microstructure		
	75	HRBW	Hardness	
	Pass	Flattening Test		Mechan
Longitudinal; 38.1mm x WT	Transverse; 38.1mm x WT	50mm GL	Tension Test	Mechanical Properties
44,500	43,700	psi	Yield (Rt0.5)	and the second second
44,600	43,400	psi	Yield (Rp0.2)	
71,000	70,000	psi	Tensile (Rm)	
0.63	0.62	(Rt0.5/Rm)	Τ/γ	
45	47	%	Elongation (A)	

Additional Details:

- and that the results meet the corresponding requirements. Inc. in accordance with API 5L-44th Ed., ASTM/ASME A/SA106-2011, A/SA53-2012 and the purchase order requirements, ✓ We hereby certify that this pipe product was manufactured, sampled, tested and inspected by Bri-Steel Manufacturing
- Service, and NACE MR0103-2010 Section 2.1. This pipe product meets the sour service requirements of NACE MR0175/ISO 15156-2:2009 Annex A2 for Region 3 Sour
- No weld repairs have been performed on this product.
- This product has not come into contact with mercury during the Bri-Steel Manufacturing processes
- √ This certificate represents a quality control system that is compliant with EN 10204:2004 Type 3.1.

Mill Test Certificate approved by:

2013 Febra

Manager of Quality and R&D Kenton Dechant, P.Eng.