

Mill Test Certificate

2125-64 Avenue, Edmonton, AB Canada T6P 1Z4 Bri-Steel Manufacturing Inc.

Fax: 001 (780) 469-6986 www.brichemsteel.com Tel: 001 (780) 469-6603

Product: Seamless Carbon Steel Pipe

Product Heat Number:

BSM-0948

Product Size:

NPS 14 SCH 120

Production Date: May 30, 2013

Production Method: Hot Expansion

Product Heat Treatment: As-rolled

Product Standards: ASME B36.10-2004, ASTM/ASME A/SA106-2011 Grade B NDE, A/SA53-2012 Grade B Type S, NACE MR0175-2009, MR0103-2010

Product Markings: BRI-STEEL MFG ASTM/ASME A/SA106 GR B A/SA53 GR B NPS 14 SCH 120 1.094 inchWT HEAT BSM-0948 (PIPE # LENGTH MASS) 150.71b/ft NDE SMLS NACE MR0175

2013/05 MADE IN CANADA.

		Product Details							Non-D	estructive	Testing		
					Mass	Geiger	Res.Mag.	Visual		TU	TU	ET	HydroTest
Heat	Test Type	Product Size	Pieces	Length	lb/ft	μR/hr	Gauss	lnsp.	9	TW	ASTM E213	ASTM E309	
BSM-0948	Heat	NPS 14 SCH 120 1.094 in.WT	ы	DRL	150.70	<5	<20	Pass	Pass	Pass	Pass	Pass	

							-	-	100 Carrier 100 Ca			r					
0.42	0.41	0.0001	0.001	0.001	0.003	0.02	0.02	0.04	0.06	0.31	0.007	0.017	0.95	0.23	Product	Vacuum Degas; Fully Killed	
	t	0.0003	0.001	0.002	0.003	0.03	0.01	0.08	0.06	0.30	0.003	0.015	0.93	0.20	Heat	Blast Furnace; EAF; Ladle Refining;	BSM-0948
(CSA)	(IIW)	В	Nb	=	<	Z.	Mo	C	숙	Si	S	P	Mn	0	Analysis	Steelmaking Method	Heat
CE	CE																
									(wt%)	Chemical Analysis (wt%)	Chemica						

BS			
BSM-0948 Heat	Heat		
Heat	Test Type		
Ferrite & Pearlite	Microstructure		
76	HRBW	Hardness	
Pass	Flattening Test		Mechar
Longitudinal; 19.1mm x WT	50mm GL	Tension Test	Mechanical Properties
44,100	psi	Yield (Rt0.5)	
69,500	psi	Tensile (Rm)	
0.63	(Rt0.5/Rm)	Τ/Υ	
43	%	Elongation (A)	

	BSM-0948	Heat	
		Standard	Test
	1	Sample Details	Impact Test
	1	Ç	Temp
	•	_	
	-	_	Impact
	1	_	Energy
	,	AVG	
	,	%	
	,	%	% Shear
	ı	%	ear
		AVG	
	1	mm	_
0.000	ī	mm	Lateral Ex
The second second		mm	pansion
(2) (2)		AVG	

Additional Details:

- results meet the corresponding requirements. Inc. in accordance with ASTM/ASME A/SA106-2011, A/SA53-2012, and the purchase order requirements, and that the We hereby certify that this pipe product was manufactured, sampled, tested and inspected by Bri-Steel Manufacturing
- Service, and NACE MR0103-2010 Section 2.1. ✓ This pipe product meets the sour service requirements of NACE MR0175/ISO 15156-2:2009 Annex A2 for Region 3 Sour
- No weld repairs have been performed on this product.
- This product has not come into contact with mercury during the Bri-Steel Manufacturing processes
- $\checkmark~$ This certificate represents a quality control system that is compliant with EN 10204:2004 Type 3.1.

Mill Test Certificate approved by:

Paul Sowden, T.T. Assistant QA Manager