

Product:

Seamless Carbon Steel Pipe

Product Heat Number:

Production Method:

Hot Expansion

Mill Test Certificate

2125-64 Avenue, Edmonton, AB Canada T6P 1Z4 Bri-Steel Manufacturing Inc.

Tel: 001 (780) 469-6603

Fax: 001 (780) 469-6986 www.brichemsteel.com

BSM-1102 Product Size: NPS 20 TRUE80

Production Date: July 23, 2013

Product Heat Treatment: As-rolled Certificate No: 000287

Product Standards: ASME B36.10-2004, ASTM/ASME A/SA106-2011 Grade B/C NDE, A/SA53-2012 Grade B Type S, NACE MR0175-2009, MR0103-2010

Product Markings: BRI-STEEL IMFG ASTM/ASME A/SA106 GR B/C A/SA53 GR B NPS 20 TRUE80 1.031 inchWT HEAT BSM-1102 (PIPE # LENGTH MASS) 208.91b/ft NDE SMLS NACE MR0175 2013/07 MADE IN CANADA.

BSM-1102	Heat		
Heat	1	1	
NPS 20 TRUE80 1,031 in.WT	Product Size		Product Detail
1	Pieces		S
DRL	Length		
208.90	lb/ft	Mass	
S	μR/hr	Geiger	
<20	Gauss	Res.Mag.	
Pass	insp.	Visual	
Pass	8		Non-l
Pass	WT	4	Non-Destructive
Pass	ASTM E213	T	esting
Pass	E213 ASTM E309	甲	
*		HydroTest	
Plain End	Condition	End	

	RSM-1107 Blast Furnace; EAF; Ladle Refining; Heat 0.19 0.87 0.013 0.002 0.32 0.04 0.04 0.0	Analysis C Mn P S Si Cr Cu		chemical Analysis (wt%)
0.20	0.19	C		
0.93	0.87	Μ'n	18 18	
0.015	0.013	ъ		
0.008	0.002	S		Chemical
0.33	0.32	Si		Analysis
0.04	0.04	ç		(wt%)
0.05	0.04	ರ		
0.01	0.03	Mo		
0.02	0.02	<u>z</u>		
0.004	0.003	<		
0.002	0.002	П		
0.001	0.001	Nb		
0.0001	0.0003	В		
0.37	E	(IW)	Œ	
0.38		(CSA)	CE	

POINT-TINS	00000	неат			
)Z Heat		lest lype	1		
Ferrite & Pearlite	1	Microstructure			
76		HRBW		Hardness	
Pass		Flattening Test	The second secon		Mechanica
Longitudinal; 19.1mm x WT		50mm GL		Tension Test	inical Properties
45,500		DSi.		Yield (Rt0.5)	
70,000	777	DSi	The statement of the st	Tensile (Rm)	
0.65	/ / / / / / / / / / / / / / / / / / /	(Rt0 5/Rm)		Τ/Υ	
49	,00	%		Elongation (A)	

Heat Standard Sample Details °C J J AVG % % AVG mm mm mm A	1															
Standard Sample Details Temp Impact Energy Shear Lateral Expansi On the standard Sample Details On the standard On the standard		1		ı	Е		ı	ı					1		'	ZOTT-IAICG
t Standard Sample Details 9C J J AVG % % AVG mm mm mm	,			******								-				2024 1107
lest Impact Test Temp Impact Energy %Shear Lateral Expansi	_	m m	mm	3	AVG	%	%	%	AVG	_	_	_	O.	Sample Details	Standard	неат
Impact Test Temp Impact Energy %	-	Spannon	רמירי מז ר			1						I			2	
		nansion	lateral F			hear	%s			t Energy	Impac		Temp	Impact Test	est	

Additional Details:

- results meet the corresponding requirements. Inc. in accordance with ASTM/ASME A/SA106-2011, A/SA53-2012, and the purchase order requirements, and that the We hereby certify that this pipe product was manufactured, sampled, tested and inspected by Bri-Steel Manufacturing
- Service, and NACE MR0103-2010 Section 2.1. ✓ This pipe product meets the sour service requirements of NACE MR0175/ISO 15156-2:2009 Annex A2 for Region 3 Sour
- No weld repairs have been performed on this product.
- This product has not come into contact with mercury during the Bri-Steel Manufacturing processes
- *Note that this product was hydrotested to 1000 psi for 5 seconds. This certificate represents a quality control system that is compliant with EN 10204:2004 Type 3.1.

Mill Test Certificate approved by:

2016 Feb 3

Manager of Quality and R&D Kenton Dechant, P.Eng.